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INTRODUCTION

The study of propagation of ionizing radiation in gaseous and condensed media is important for many
areas of science and engineering, e.g., research in the properties of matter in extreme conditions [1], cos-
mic radiation [2], etc. Mathematical modeling is an efficient tool for such studies, because it enables one
to optimize expensive experimental works.

In the general case, scattering of photons and electrons with a high energy substantially exceeding the
ionization potential of the medium leads to formation of a cascade of particles. This results from collisions
of particles with atoms of the medium and the ensuing degradation of the spectrum. Photons suffer Comp-
ton scattering and photoabsorption and form electron—positron pairs [3—6]. Fast electrons and positrons
produce bremsstrahlung, impact ionization, and molecular excitation and suffer elastic scattering [5—8].
In addition, positrons annihilate on atomic electrons with ensuing photon emission [4, 5]. The formation
of charged particles—electrons, positrons, and ions—is accompanied by charge separation and produces
electromagnetic field [8]. At a sufficient flux density, the plasma and Larmor electron and positron fre-
quencies become comparable with the collision frequency. The electromagnetic field becomes self-con-
sistent and affects the charged particle motion, which leads to instabilities of their flow. As a result of
impact ionization, in the continuous spectrum, in addition to fast charged particles, low-energy electrons
are formed [9, 10]. Under the action of self-consistent field, these electrons acquire a directed velocity and
form an additional electric current.

The physical phenomenon considered above is described by quasilinear kinetic equations for the dis-
tribution function of cascade particles and Maxwell’s equations for the self-consistent electromagnetic
field. Two basic approaches to the numerical solution of mathematical problems for the kinetic equations
are being developed. The first one, in fact, is a finite-difference approach and is termed the discrete-ordi-
nates method [11—13]. The second approach, implemented in the Monte Carlo [14, 15] and particle [16,
17] methods, consists in the simulation of a dynamic system by constructing a generalized solution of the
kinetic equation. Both approaches have their advantages and drawbacks. The finite-difference methods
are more accurate and make possible the direct calculation of the distributions in the space of differentia-
ble functions. The dynamic methods converge much more slowly and require the computation of func-
tionals over the space of generalized solutions. On the other hand, the dynamic methods make possible an
efficient program implementation on parallel supercomputers.

The authors of the present work succeeded in obtaining results of certain practical significance on the
basis of the second approach [18, 19]. The experience of its application has demonstrated that one of
important problems is to combine the simulation of collisions and transport of charge particles in a self-
consistent.electromagnetic. field..In this connection, the current work offers a numerical algorithm for
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solving the kinetic equation for the simulation of collisions. The method of numerical solution of Max-
well’s equations was thoroughly considered in [20], and the algorithm implementing the particle methods
in the absence of collisions or in the mean energy loss approximation, in [21—23].

The complexity of simulation of electron flows substantially exceeds the complexity of simulation of
photon transport. The reason is that electrons are under the action of the self-consistent electromagnetic
field and scattering is determined by the long-range Coulomb interaction with the medium. Therefore, in
this work, the kinetic equation for electrons is considered. The algorithms for simulation of electron col-
lisions are extended to the case of positrons and photons; they can also be applied for describing the cas-
cade as a whole.

1. PROBLEM STATEMENT

Consider an electron distribution function f = f(z,r,p) in the phase space (r,p) = R} x Rf, of coordi-
nates r = (x,y,z) and momenta p = (p,, p,, p. ). This functions obeys the equations

% +div, (vf) + ediv, [(E +[B,H]) f] + o'vf = O(t,r,p) + Idp'cs(p,p') v (p'), (1
curli = 19E L 4n; g = _19H )
codt ¢ c Ot

where 7 is the laboratory time;V is the electron velocity; E = E(¢,r) and H = H(z,r) are the electric and
magnetic fields, respectively; div, and div, denote divergence in the coordinate and momentum spaces,
respectively; e is the electron charge; p = v/ ¢, ¢ s the speed of light in vacuum; ¢’ is the total macroscopic
electron scattering cross section; cs(p,p') is the differential macroscopic electron scattering cross section;
p' and p are the electron momenta before and after a collision, respectively; and j is the electron current
density. The external electron source is defined by the function Q = Q(z,r,p) on the right of Eq. (1).

Following the particle method (see [16]), the solution to Eq. (1) is sought in the class of finitely sup-
ported generalized functions (see [24]) defined in the test function space of finitely supported infinitely

differentiable functions ¢ = @(r,p) in the phase space (r, p) and depending on the parameter ¢ = 0.
The requirement for the function f(7,r,p) to be finitely supported is necessary for the correct definition
of the electric current density j = j(t, r) in Maxwell’s equations (2). Let us define it as follows. The function

vf (¢,r,p)is finitely supported since the function f (¢,r,p) is finitely supported and v is continuously differ-
entiable (see [24]). Let us define the current density as the action of the finitely supported generalized

function vf (1,1, p) on a infinitely differentiable function W(|r - (1|,A), a < [Ri, A > 0, satisfying the con-
ditions
J.W(|r —-a|,A)da =1, lim Ier(|r —af,A)¢(r,p) = ¢(a,p).
Ri A—0 ]Ri
Despite that the function W (|r — @/, A) is not finitely supported in the space (r,p), the current density

and the electron density n = n(z,r) are defined correctly just because the function f (z,r,p) is finitely sup-
ported:

i=(f(ta,p),vyW(r—al,A)), n=(f(0ep),W(r-alA)). 3)

In such definition of the current density, the electric and magnetic fields calculated from Maxwell’s
equations (2) are infinitely differentiable functions of the coordinates. Therefore, the term
div, (vf) + ediv, [(E + [B,H]) /] on the left of Eq. (1) is a finitely supported generalized function (see [24]).

Represent the collision integral in Eq. (1) in the form
c'vf - jdp'c(p,p') vf(p) = Idr' jdp'é(r' =1)[o(p,p) v/ (p) —o(p,p) v/ (D]

and consider the function o (p,p') 8(r — r'). The differential cross section o (p,p') for any of the considered
scattering processes depends on the cosine of the angle between the vectors p' and p and on the absolute

values of the momenta before and after scattering. The cross sections vanish for p > p', because the energy
of a particle cannot increase as a result of scattering. Since scattering without changing the momentum is
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1536 BEREZIN et al.

possible (for example, the ion charge exchange), the differential cross section can take the form
o(p,p') = 8(p —p'). For these reasons, the aggregate o(p,p')d(r —r') may be considered as a finitely sup-

ported generalized function of variables p' and r' with the first order of singularity. In this case, the collision
integral is a convolution of finitely supported generalized functions, i.e., a finitely supported generalized
function. The orders of singularity of all terms of the equations as functions of the variables r and p coin-
cide.

Thus, the external electron source Q = Q(1,r,p) on the right of Eq. (1) must also be defined by a finitely
supported generalized function of the variables r and p.

The differential operators of Egs. (1) and (2) define a quasilinear system of first-order hyperbolic par-
tial differential equations. For this system, we consider the Cauchy problem (see [25]) with homogeneous
initial data at zero time.

The representation of the solution of the kinetic equation by a finitely supported generalized function
was considered in [21, 23] and will be improved in the present work.

Equation (1) is equivalent to the integral equation
Idt [d¥ [db| 0 (7.%.9) + [dp'o (b)) v/ (7.F p)}exp{—jdf v }S(r—rs)S(p—ps), (4)

where the functions r’ =r’(¢,7,F,p) and p’ = p’ (1,7, T, p) are solutions of the equations of motion

dl's s dps _ s l s s
E—V 5 E—e(E(t,r )+C|:V ,H(f,l' )}) (5)
with the initial conditions rs‘ =T and ps‘ _=p. The integrand in the exponent has the form
=t t=t

t

o VS' =g (psv)v(pj'), where ps. = pj (f,f,f‘,ﬁ).

The equivalence of Egs. (1) and (4) is justified by substituting (4) into (1) and considering the action
of the residual term on the test function from the test function space. This procedure was presented in [23]
for collisionless equation (1) and is not repeated here. It should only be added that the derivative on the
right of (4) with respect to the upper limit of integration with respect to the variable 7 is

o(t,r,p)+ J‘dp'c(p,p') vf(t,r,p).

2. APPROXIMATION OF SINGLE SCATTERING IN A TIME STEP

Suppose that functions f = f(t,r,p), E = E(#,r), and H = H(#,r) are the solution to the Cauchy prob-
lem (1) and (2) with zero initial conditions. Consider f = f (7 + At,r,p) in accordance with (4):

t+At t+At

f(t+ A1) = [ df [dF [dpexpi- J.dt' LD (r,p,t + ALTT,B) ©
t

[ (7,5,9)8(t —7) + Q(F,%,p) + jdp’c f),p')v'f(f,f,p')],
where (D(r,p,t,f,f,f))ES(r—rs(t,f,f,f)))5(p—ps(f,f,f',f’))-

Formula (6) describes electron propagation and absorption in the time interval (t,t + At). It sums elec-
trons formed before the instant of time ¢ (the first term in brackets on the right-hand side), electrons pro-
duced by the source (the second terms), and electrons forming as a result of collisions (the third term) in

the time interval (,7 + Af).
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The approximation of single scattering of particles in a time step Az consists in the replacement of the
right-hand side of Eq. (6) by the following aggregate:

+At +At
Flt+Ah) = jdtjdfjdpexp{— J.dt' ’ S}(D(r,p,tJrAt,f,f‘,f))
7

t
x| f(F7D)3(—7)+ O 7) +8(1=7) [ dr [an'o(nw) vy (r,Ep) |
t—At
The first and second terms on the right of (7) coincide with the corresponding terms in (6). The third
term describes the propagation and absorption in the time interval (t,t + At) of particles formed in the time

interval (# — At,f) due to scattering. In this case, we assume that all acts of scattering took place at the
instant of time 7.

To complete the definition of the approximation process, it should be noted that
At At
f(Af) = Idf j dF Idf)Q(f, P, p)exp {— j drs' (r',p") VJ}(I)(I', p.ALTE ). (8)
0 7

Consider the difference of (7) and (6):
t+At 1+At
Af = j d7 jdrjdpexp - j dr'c'v* L D(r,p.t + ALT,E D)
)
x| [db's(mp) v/ (7.5) - 8(r-7) j dr [dp's(p.p) v/ (1,ED) |
1—At
The action of the finitely supported function (9) on an element of the test function space has the form

t+At t+At

(Af,) = jdzjdrjdpexp - jdf v ho(t + AL E ) o’ (5) 7u(. E, )

(10)
t t+A?
— [ dr [dF [dbexpi{~ [ dro'v" to(r+AttEB)o" (5)u(r.EB).
t—At

The arrival of a particle into a phase volume element due to collisions is written in (10) in the form

[db'o(p.0) v/ (11,0) = o' (p) vu(s,r,).

We have introduced the following notation:
u(trp) = [dpw(n.p) f(LD), w(np)=o(p.p)v/o'v,
o(r* (7,5.5).0° (¢ + ALTE D)) = 0(17,F. B)-

By Rolle’s theorem, there are " € [1, + Af] and ¢~ € [t — At,¢] such that

1+At
(Af,0) = Idrjdpc ) oA | u(t 7. p)expd - J-dt' v Lo+ Ant E )
: (11)

t+At
(t rp)exp{— jdt' ! s}([)(l‘-i-Al‘,f,lN',f))].

t
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Therefore, expression (7) determines the solution of Eq. (1) with the first order of accuracy with
respect to the parameter 6’ vAz. In numerical calculations, the condition ¢’ vAf < 1 should be satisfied.

3. THE STATISTICAL INTERPRETATION

In most cases of practical importance, the external electron source Q = Q(,r,p) (see [19]) is con-
structed on the basis of processing and interpretation of dosimetry data. The primary physical meaning of
such data reflects the parameters of ionization in detector’s active zone and relative position of the radia-
tion source. From these data, the number of particles produced per unit time in certain, possibly small but

always finite volumes of the phase space, Ar;,Ap,, i =1, ..., I, is reconstructed. In addition, radiation mea-
surements detect the number of pairs of charge carriers forming for a finite time ¢,,, —¢, = At > 0,
n=0,..., N, rather than the instant ionization rate. Measurements of this kind are not capable of distin-

guishing particles forming inside a volume Ar;Ap, for atime Az. Therefore, it is natural to specify the exter-
nal source by a finite sum of elementary sources:

Q(t,r,p)=26(1‘—t,,)qu-S(r—r,»)S(p—pi), (12)

where 1; € Ar;, p; € Ap,;, and g, is the number of particles forming inside the volume Ar;Ap; for the time
tn+1 - tn‘
In such definition, the function Q(#,r,p) becomes a generalized function not only of coordinates and

momenta but of time as well. The order of its singularity as a function of each variable is unity (see [24]).
Therefore, the solution of the Cauchy problem for Egs. (1) and (2) with the initial data in the hyperplane

t = 0 and such right-hand side is an ordinary function of time. The function Q(z,r,p) is a finitely supported
generalized function (see [24]). Indeed, since all r; and p; are chosen from a finite set, they belong to some

bounded subdomain D of the phase space and all ¢, belong to a certain time interval. The action of the gen-

eralized function Q(,r,p) defined by formula (12) on any test function with a support located outside the
domain D or the time interval is zero.

If the source in Eq. (1) is specified in the form (12), then, for any 7 =1¢, the aggregate
f(t,r,p)8(¢ —1,) + Q(t,r,p) in formula (6) can be represented in the form

f(trp)d(t—1,)+0(tr,p) =8(t—1,) > N, 3(r—r,)3(p—py)- (13)

The right-hand side of (13) sums all electrons produced and not absorbed till the instant of time # = ¢,,
inclusively. The quantity N, , expresses the number of electrons having the coordinates r;, p, at the instant
of time ¢ = ¢,. For electrons produced immediately at the instant of time ¢ = #,, we have the relationship
N,x = q,. For electrons produced at an instant of time f <7,, this quantity is proportional to

exp{ fdt' ! S},

Consider the solution of Eq. (1) and the equivalent integral equation (4) in the interval [t,, Is ] by the
method of successive generations [26], assuming the solution f (t T, p) to be known at ¢ =¢,_,. The solution
of the kinetic equation in the zero generation in the interval [z, ,,1,], f, = f,(,r,p), has the form

fo= ZNn 1k €XP —_[df" t (t”atnflrkspk)) @ (1, P, 751, s Pr)- (14)
n—l1

Following [16], each term of the sum (14) will be called a particle. The first-generation particle source
is represented in the form

Kf, —ZNn Lk €Xpy— J.dt”cstv pk) S(r—rz)cv(p,pi), (15)

n—1
where pli = ps (t”atn—larka pk)s rlf (t) = rS (tatn—lark’pk)’ and pi (t) = pj (tatn—lark’ pk)
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Suppose that a random variable g, is uniformly distributed in the interval [0, 1]. Define the random
variable 12 as the root of the equation

0
b1 +Tk

expy— J. dr's'v(ps) s = a,. (16)

by
In [18], the following formulas for the mathematical expectations have been derived:

t t
M| ®| exp —Idt"ctv(pf(”) —a, ||=exp —Idt"cs’v(p,i”) , (17)

Ty [
M[B(rg —(t- t,,_l))] c v(pk (t)) expy— Idt"ctv Di ) . (18)
Thei
The mathematical expectation of the random variable 12 is the lifetime of the particle with the index k.

Suppose that the random variable p}( is distributed with a probability density w (p, PL ) It is obvious that

M[3(p—pi)| = w(p.pi)- (19)

The random variables a, and p}c are independent. We have the following possible statistical interpreta-
tion of the zero-generation particle distribution function (14) and the first-generation particle source (15):

fi' = Y Ns®| expi— [dr'a"v(p) - a |5(r —x: (1)) 3(p — b} (1)), (20)
k ()
Kfy" =" Noud(vi = (1= 1,00))3(r —10)3(p — b1, 1)
k
where
M S )=, MKRR'|=Kf . (22)

The mathematical expectation in formulas (22) is calculated from the quantities a, and p}{.

Consider the expression for distribution function (20) at 7 = ¢,
f(]sl (tnarap) = ZNnkG)(Tg - At)s(r - rlj (tn))S(p - pli (tn))
k

It should be noted that, due to (16),

®| exp —Idt o'v pOk) —a =®(12—A1).

tyy
Also consider

Iy

_[ KfSdr = z N, © (At - 12)6(r -r, (tn_l +1) ))S(p - pi (t,,_l + 12))
k

Tn-1
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In the framework of the algorithm of the first-order accuracy with respect to time, which is used for
solving the equation of particles’ motion, the current values of the coordinates and momenta at the

instants of time #,_; + 1:2 and ¢, coincide. Consider the expression

d(r— fn){zqmﬁ(f -1,)3(p-p;)
i (23)

+ ZNH,,CS(r -r; (t,))[@(ri - At)S(p -p (t,,)) + @(At - rg)é(p —ps (tn))}}

If the electron source is defined by formula (12), then aggregate (23) is a statistical analog of the last
multiplier in the integrand on the right of formula (7):

FERD)S(=1)+QEED) +8( =) [ df [ap'o(bp) vy (r.Ep).

t=At

Consider the particle with a number &, having at the instant of time ¢ =7,_, the coordinates r = r, and
p = p, in the phase space. Until the instant of time ¢ = ¢,, it moves without collisions and takes the coor-

dinates r; (¢,) and p; (#,), which are calculated by solving the equations of motion (5). At the instant of
time ¢ = ¢,, the value of the random variable 12 , the particle lifetime, is raffled. If 12 exceeds the time step

At =t, —t,_, then the particle conserves the momentum p; (#,). If 12 is smaller than Af, then the particle
is excluded from further consideration. In this case, the momentum after scattering is raffled and a new

particle with the momentum p}C (t,) is generated. Particles produced by the source at the instant of time
t = t, are also added. Thus, in the time interval (#,,z,,,), there are particles emitted by the source at # = ¢,

(the first term on the right of (23)), particles existing at # = #,_, and not scattered for the time A7 = ¢, —¢,_,
(the second term), and particles produced due to scattering (the third term).

It should be noted that this model enables one to consider various types of particles, e.g., photons, elec-
trons, and positrons in a cascade. The scattering of a particle of a given type can result in the formation of
one particle of the same type (excitation of an atom by an electron, photon coherent scattering), two par-
ticles of the same type (impact ionization of an atom with emission of two identical indistinguishable elec-
trons), one particle of a different type (photoabsorption with emission of a recoil electron, positron anni-
hilation), and two particles of different types (electron or positron bremsstrahlung, Compton scattering,
electron—positron pair formation).

Only one scattering of a particle in a time step is admitted. The probability of single scattering of a par-
ticle in a time step, o’ vy (tn)At, must be so small that the second scattering, whose probability is propor-

2
tional to (c’ vy (tn) At) , may be neglected. This follows both from the physics of scattering and from esti-

mate (11).

4. MULTIPLE SCATTERING IN A TIME STEP

Consider formulas (14), (15), (20), and (21) in the interval ((7,,7,.,,)):
t
fO = ZNn,k eXp _J.dt”GtV(pS (t"a tnrka pk)) @(r, pst’tn’rka pk)a
k t,
t
Kf, = Z N, €Xp —jdt"ctv(ps (7", t,,rk,pk)) 8(1’ - (t)) Gv(p,pi (t)),
k ‘,
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= z N,,© (exp{ Jdt"cs’v Di )} - ao}‘i(r - (t))S(p -y (t)),
Kf)' = ZN,,,kS(rg —(r- t,,))S(r - r,f)B(p - p}(),
k

denoting r; (1) = 1’ (1,1,,1,,p, ) and p; (1) = p’ (1,2, 10, P )-

Calculating the first-generation electron distribution function f; yields

fi= ZNnkIdt Idrjdpcvk p,pk( ))d)(r,p,t,f,r,f(f),f))

xexp{ fdt" ! pk(t” '[dt' "v* t 1,re (1), )}

Due to (17)—(19),

f = ZNnkIdt Idpjdao jdpk exp{—jdt" (o (rn (7). f)))}
x 8(rk - (7 - t,,))S(p - pk)d)(r,p,t,t,rk (t),f)).
Calculating the integrals with respect to the inner variables, we obtain

1
fi= ZN,,,,( .[dao J.a’p}C@(t - )exp{ J. dt'c' ( (t',t” + rg,r,f (tn + ‘CZ),p}())}
k 0

P

><CI)(r,p,t,t,7 +or (t,1 + tﬁ),plk).
Hence,

t
=M ZN,,’,((H)(I —t, - tg)exp{— I dt"cs'v(ps (t',t,, +Ty,1, (t,, + TZ),P}C))}
k

0
1,+Tk

(24)
x CD(r,p,t,t,, + 10,10 (t,, + rg),p}()}.

Suppose that the random variable q, is uniformly distributed in the interval [0, 1] and is independent

of a, and the random variable t, is a root of the equation

1+Te 4Ty
ol- [ araelp (rug s+ L)l <o

1,410

Then we have the following possible statistical interpretation of the first-generation particle distribu-
tion function:

£ ZN,,,@( —10)O(t, + T + T — 1) (5, p 11, + TLE (£, + T3 ) D),

where M[f,”] =f.
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The “statistical” first-generation particle distribution function (24) can be obtained by the direct inte-
gration of their “statistical” source:

£ (r) = [df [dF [dBRS;" (7 F B)exp —jdfc’vS}s(r—rf)S(p_pf).

Hence, the statistical distribution functions of particles of further generations, f.', can be constructed
without consideration of deterministic functions. Moreover, the relationship

M1 = Fon

holds, where f,, is the deterministic distribution function of the mth generation of particles. In each gen-

eration, two new random variables a,, and p}’, which are mutually independent and independent of their
counterparts in previous generations, arise.

The infinite sum of the distribution functions of particles in all generations,

yields a sufficiently precise solution of Eq. (1) forany ¢ > ¢,.

Therefore,

o0

f=M =Y M. (25)

m=0

Consider f* (#,41,1,Dp). It is theoretically possible that series (25), which defines it, contains an infinite
number of terms. In calculations, it means that, at least for one combination of indices # and k, the con-
dition Zw . Ty < At is satisfied. The probability of such an event is negligibly small. Therefore,

m=

s (t,.1,1,P) is expressed by a finite sum and is a finitely supported generalized function of the variables r
and p.

Thus, the electron distribution function f = f(z,r,p) at an arbitrary time point is a finitely supported

generalized function depending on the parameter ¢ and a finite number of random parameters a,, and p; .

5. SPECIFICITIES OF SIMULATION OF IONIZED MEDIA OF LARGE VOLUME

Some practical problems require the consideration of the propagation of a pulsed photon flux and the
cascade produced by it in a gaseous medium to long distances [27]. In this case, it is advisable to pass from

the variables (z,r,p) to the variables (& r,p), where & =7 — r/c is the proper time of the photon radiation
leading edge.

In the proper time, the Cauchy problem (1) turns into the Goursat problem [25] for the equations [27]

(1-(B, e,))al +div, (vf) —ediv, [(E +[B,H]) f] + 6'vf
0% (26)

=Q(&r,p) + fdp'c(p,p') v (p),

curlH = {e,,@} + 10E + 4—nj, curlE = l[e”@_ﬂ _ la_H,
cl 0] cot ¢ cl T OE| coE

where e, is a unit vector in the radial direction.
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The kinetic equation of system (26) is equivalent to the following integral equation (see [27]):

f= jdzjdrjdpexp —jdt' ’ } O(7,F,p) + Idp'c(f),p')V'f(f,f',p'ﬂ o
jdssa &' (s.7.7.9)) @ (r.p.5.7.E.p).

where the functions t*=t'(s,7,£p), 1 =r'(s7.Ep), p =p (sF.EP), 1 =r'(s\7.Fp), and
p, =p’(s.7,7,p) are the solutions to the equations of motion
de’ Jds = 1— <B‘Y,e,>, dr’ [ds = v° dp’ [ds = e(Ex + [BS,HS]) (28)

=7, r

Ky ~
L =b
s=t
The variable s in (28) is used for the parameterization of the particle’s path in the phase space

(r,p) = [Rf X [R{i,. The physical meaning of this variable is the laboratory time, i.e., s = ¢, which is suggested
by the solution of the first equation (28):

g =s—r'fc—(f-F/c), (29)

and the form of the remaining equations of motion.

Taking into account the physical meaning of the path parameter and solution (29), we transform
Eq. (27) to

/= jdtjdrj'dpexp jdt’ vHQERD) + [dro(hp) vy (F.n.p)] (30)

J.dtS t—r/c)+(t1—r1/c))d)(r p.t,7,F,p).

Equations (30) in the proper time and Egs. (4) in the laboratory time coincide up to the change of
variables t,r — & r. Therefore, the motion and scattering of particles may be considered in the labora-
tory time, if one uses an algorithm identical to that described in the previous section. The only addition
is that the particle lifetime in the laboratory time defined as a function of a random variable should be

put into correspondence with an interval of the proper time with the aid of solution (29) of the first
equation in (28).

6. SPECIFICITIES OF SIMULATION OF A CASCADE IN DENSE MATERIALS

Consider Eq. (3) in materials with such a density that the particle collision frequency substantially
exceeds the plasma frequency while the electron lifetime is small as compared to the source duration.
Then the influence of the self-consistent field on the particle motion may be neglected. Equation (4) takes
the form

- J'df jdf[Q(f,f, p) + Idp'c(f', Bp) v (1, f',p')}
to 31
x exp{— j vdf's' (r’ p)}S(r —F-v(p)(t 7))
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In Eq. (31), it is taken into account that macroscopic scattering cross sections may depend on spatial
coordinates. By the change of variables v(p)(r—7) = v(p)Q(t—7) =Qqg, v(p)(t—7) = C, r—¢/v =T,
v(p)(f'—7)=¢,and c—¢'=¢", Eq. (31) is reduced to the equation

vt 14
f= 1 Idgexp —J.dg"ct (r—Qg", p)
Vo 0 (32)

x [Q(t —é,r —Qg,p) + jdp'c(r -Q¢p,p) V’f(t —g»r —9%1")}

which coincides with the stationary integral equation of radiative transfer from the classical book [26] up
to the limit of integration over the variable ¢. The integration with respect to ¢ from 0 to v¢ means that, at
the point r, to the instant of time ¢, particles capable of passing the distance vf gather.

Consider the solution to Eq. (32) by the successive-generation method. For the zero-generation parti-
cle distribution function, we have

vt c
f=1 Jdgexp —Idg"c’ (r-Qg" p) Q(t -5
VO 0

E)
\%

r— Qg,p). (33)

In the overwhelming majority of practical problems, the lifetimes of particles in dense materials are
small as compared to the radiation source duration and, therefore, to the characteristic time of variation
in the unscattered radiation distribution functions. With respect to time and, therefore, the variable g, the

source varies substantially more slowly than the exponential exp{— f dc" G (r —ac p)} Represent the

source in the form Q(¢,r,p) = N (¢)Q(r,p), separating the dependence of the integrand (33) on ¢ — ¢/v in
the explicit form. Therefore, we have the following approximation:

0 0

vt S
fo= éN(t) [dgexp {—J.dg"ct (r- 9@'21))}50 - Qg p). 4

Consider the following approximation. Represent distribution function (34) in the form

0 S
fo = éN(t) Idg exp —Idg"G' (r—Qg" p) O(r—Qgp)
0 0 (35)

@© S
- J.dgexp —J.dg"cst(r—ﬂg",p) Q(r—Qg,p) )
0

vt

The distribution function in dense materials is calculated at times substantially exceeding the particle

lifetimes, i.e., we have the inequality o'v¢ > 1. This means that the first term in (35) substantially exceeds
the second term due to the rapid decrease in the exponential. In this case, the approximation takes the
following form:

© S
fo = LN (0) [dgex {—Idg”c’ (r- 9@"’1’)}50 - Qc.p).
\"

0 0

This approximation is violated near ¢ = 0 at the times on the order of a few lifetimes of scattered parti-
cles. It should be noted that, in the exact formulation, the function N (t) at = 0 is zero.
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The approximations introduced above hold in any subsequent generation; moreover, their accuracy
increases with generations. This follows from the fact that the particle energy and, therefore, the path
length on scattering do not increase—on the contrary, on the average, they decrease. Therefore, Eq. (32)
is transformed to

© S
f = J.dc;exp —Idg"c’ (r—-Qg", p)
0 (36)

0

X [Q(r —Qc,p)+ J.dp'cs(r —Qcp,p) v (r - Qg,p')},

where v (t,r,p) = N (¢) f (r,p)-

The algorithm for solving Eq. (36) is constructed by analogy with the algorithm for the nonstationary
case. The simplification is in the following. In the stationary consideration, the particle lifetime is not
compared with the time step. The fact of scattering is recorded, and the time is used only for the parame-
terization of the particle motion in the coordinate space.

CONCLUSIONS

The condition for applicability of the single-scattering approximation in a time step is an obstacle for
solving most problems of practical importance. Computations performed in this approximation have
demonstrated the following [18]. For electrons with the energy as low as of a few electronvolts, the main
collision process in a gas medium is elastic scattering. Its cross section exceeds by two orders of magnitude
the cross sections of all inelastic processes. As a result, the study of, e.g., breakdown of gas in an external
electric field requires the averaging of the elastic scattering process. Otherwise, the calculation is reduced
to simulation of Brownian motion, on the background of which the ionization process is difficult to dis-
tinguish.

Difficulties also arise in the consideration of a cascade of high-energy particles with substantially dif-
ferent lifetimes. The time step in such a problem is determined by the cross section of ionizing electron
collisions; each of them is accompanied by an averagely insignificant variation in the momentum. The cal-
culation is reduced to simulation of electron moderation, and photon collisions become rare events.

The consideration of multiple collisions in a time step removes these difficulties. Despite that the
amount of computation in a time step may dramatically increase because multiple processing of collisions
of a certain fraction of particles is necessary, the consideration of the main process is not lost on the back-
ground of less significant processes. The time step may be chosen so that the main process be explicitly
separated.
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